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Abstract

COVID-19 triggered by Sars-CoV-2 has caused hundreds of thousands of deaths
worldwide. Organic and inorganic compounds have been tested as potential in-
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hibitors of this lethal virus. For these tests, several techniques are use to design
molecules of biological interest for drug composition, in which molecular cou-
pling plays an important role. In the present work, the compounds acids kau-
renoic, copalic, and beta-caryophyllene that form the copaiba oil were studied as
anti-inflammatories and opens the possibility to inhibit Sars-CoV-2. Molecular
docking showed alkyl, pi-alkyl, conventional H-bond, unfavorable bump, and
Van der Waals interactions. The calculated electrostatic potential maps showed
the nucleophilic and electrophilic regions. The negative binding energies ob-
tained for the three acids suggest the stability of the complexes. The minimum
energy states for β-caryophyllene are lower than the other compounds analyzed,
and it can be predicted that this is the most stable.

Key words: Docking molecular; Copáıba oil; Covid-19; Inhibitors.

1. Introduction

The first Coronavirus was discovered in the 1930s [1], but severe acute res-
piratory syndrome (Sars) gained notoriety in the world between the years 2002-
2003 [2]. At the end of 2019, Sars-CoV-2 triggered a pandemic that has already
caused nearly 3.5 million deaths worldwide [3].

From serological analyzes and genetic studies, it it is possible to classify the
coronaviruses into four different genera: α, β, γ and β-CoV [4]. β-CoV type is
the cause of the COVID-19 found in Wuhan, China [5]. The Coronaviruses are
enveloped, spherical, or pleomorphic viruses and can vary their shape according
to the period of the reproductive life cycle or environmental conditions, with
typical sizes ranging from 80 to 120 nm [4]. The coronavirus spike protein is
a multifunctional molecular machine that initially binds to a receptor on the
surface of the host cell through its S1 subunit and then fuses viral and host
membranes through its S2 subunit, leading to viral binding [6].

We are investigating the inhibitory potential of Copaiba oil against the
COVID-19 virus, and we associated the oil compounds with the binding of the
Sars-COV-2 spike protein receptor as a target using molecular docking for these
calculations. Molecular docking has been used by pharmaceutical companies to
study the Structure-Activity Relationship of drugs for more than three decades.
New drugs have been discovered and developed during these years [7].

This method gives the possibility to predict both the binding affinity be-
tween ligand and protein and the structure of the protein-ligand complex using
the computational method, which is relevant information for optimization [8, 9].
Molecular docking techniques aim to predict the best matching binding mode
of a ligand to a macromolecular partner. It consists of the generation of several
possible conformations/orientations [10]. Docking is a technique of designing
drug molecules by simulating the geometry of these molecules and their inter-
molecular forces [3]. In this way, molecular docking optimizes the ligand bound
to the active site of the receptor protein and investigates protein-ligand inter-
actions. Molecular coupling algorithms provide results for quantitative energy
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binding markers, including a variety of coupled compounds supported by the
binding affinity of ligand-receptor complexes with pharmacokinetic properties.
From this calculation, we can predict the different interactions between the oil
compounds and the spike protein. Ligand-protein interactions are involved in
many biological processes with consequent pharmaceutical industry implications
[10].

Several studies have been done on Copaiba oils, mainly due to the inter-
est from the pharmacological and food industries around the globe [11]. The
Brazilian Amazon concentrates a large number of natural resources species with
various therapeutic applications in alternative medicine. Copaiba oil is an ole-
oresin extracted from the trunk of trees of the Copaifera genus (Fabaceae).
Frequently, copaiba grows in tropical regions of South America. The oil-resin is
a natural product of the Amazon’s biodiversity. Copaiba oil is commonly used
in folk medicine to treat multiple diseases, such as ulcers, wounds, syphilis,
bronchitis, and inflammation [12].

Scientific researches with copaiba demonstrated that the copaifera reticulate
oleoresin exhibits some biological actions such as anti-inflammatory, analgesic,
antioxidant, anxiolytic, and antimicrobial activities, and neutrophilic activation
[13–15].

Besides these properties, some studies suggest that these species are free
from toxicity and teratogenic activity during pregnancy [16]. Also, the copaiba
oil can be used as an anti-tumor, anti-inflammatory, antimicrobial against a
wide range of microorganisms, and healing on different tissues of the human
body.

In several animal models, studies demonstrated that copaiba oil has heal-
ing and anti-inflammatory effects. Besides, anti-inflammatory and anti-tumor
properties of copaiba oils have been described in several works [17–20].Those
results are significant because they can the designed as applications to improve
the quality of life in a society.

2. Computational details

Initially, the constituent compounds of the copaiba oil were accessed in the
ChemSpider database. All compounds were subjected to a classical simulation
to find the lowest energy geometries, based on the lamarckian genetic algorithm
(LGA) algorithm, using the Forcite Code [21, 22].

The universal force field (UFF) was selected to perform the calculations.
After obtaining the best conformation of the geometries, the structures were
submitted to a new optimization at the DFT level using the DMOL3 Code
[23, 24], where the generalized gradient approximation (GGA) considers all the
electrons of the molecules.

Molecular electrostatic potential surfaces were investigated to identify the
most reactive nucleophilic and electrophilic regions. We performed molecular
docking with the ArgusLab 4.0.1 program. There are two options for docking
algorithms, the first one is GA dock (Genetic Algorithm), and the other one is
Argusdock (Shape-Based Search Algorithm).
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The calculations are from GAdock docking algorithms, which take into ac-
count the Lamarckian Genetic Algorithm. The docking location was defined
using a box with coordinates 47.25 × 36.00 × 49.75 Å, spacing of 0.400 Å, and
flexible binder coupling mode.

3. Results and discussion

3.1. Optimization and electrostatic interaction

Figures 1A, B and C show the optimized structures and the numbering of
the atoms forming the acids kaurenoic, copalic, and β-caryophyllene. The H
bond represents an interaction between two electronegative atoms.

Table 1 illustrates their total energies (ET), binding energy (BE) and max-
imum cartesian force (MCF) of these acids. The global minimum energies are
found to be -922.5966100 a.u (−25105 eV), −924.0927850 a.u (-25145 eV), -
580.6642644 (-15800 eV) for kaurenoic, copalic and β-caryophyllene, respec-
tively.

Table 1: Calculated total energies (ET), binding energy (BE) and maximum cartesian force
(MCF) of acids kaurenoic, copalic and β-caryophyllene.

Molecules ET (Hartree) BE (Kcal/mol) MCF
Kaurenoic −922.5966100 −10.56 0.139052× 10−2

Copalic −924.0927850 −10.77 0.495639× 10−3

β-caryophyllene −580.6642644 −10.96 0.196084× 10−2

The binding energy of the protein spike with kaurenoic acid was −10.56
kcal/mol, with copalic it was −10.77 kcal/mol, and with β-caryophyllene, it
was −10.96 kcal/mol. Negative values of binding energies suggest the stability
of the complexes.

Their maximum Cartesian forces are found to be 0.139052×10−2, 0.495639×
10−3 and 0.196084×10−2, as can be seen in table 1. The addition of other atoms
in the geometry of compounds influences their stability. We can notice in table
1 that the β-caryophyllene compound is the most stable because the global-
minimum energy is the smallest compared to the other acids ones.

Fig. 2 shows the maps of molecular electrostatic potential (MEPs) of the
copaiba oil-forming acid molecules. The MEP is a tool used to describe the most
reactive nucleophilic and electrophilic regions of a molecule against reactive bio-
logical potentials and intermolecular interactions [25, 26]. The electrophilic site
indicates strong attraction and the nucleophilic site indicates strong repulsion.
In these regions, the formation of hydrogen bonds occurs. MEPs provide regions
of negative, positive and neutral electrostatic potential in terms of color grading
and are an indicator in researching molecular structure properties. Atoms in red
represent the most electronegative electrostatic potential; atoms in this region
tend to attract electrons (electrophilic). Atoms in blue indicates the most elec-
tropositive potential atoms in this region tend to repel electrons (nucleophilic).
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A
B

C

Figure 1: Optimization of acids kaurenoic in A, copalic in B and β-caryophyllene in C.

In yellow we can see the forming acids of the copaiba oil (binders). As a re-
sult, the surfaces of the MEPs range from -0.100 a.u (deepest red) to 0.100 a.u
(deepest blue) for the three compounds.

3.2. Molecular docking and 2D visual representations

Figures 3A, B, and C show the molecular docking of kaurenoic, copalic, and
β-caryophyllene acids interacting with the spike protein of Sars-CoV-2. The
purpose of docking is determine the modes of interaction of ligands (copaiba
oil-forming acids) while organizing favorable orientations for the binding of a
ligand to a receptor [27–31].

The receptor represents the COVID-19 protein that has one or more specific
active sites. In this work, before coupling, all native ligands and water molecules
were removed from the protein structure. In addition, polar hydrogen atoms
are added and Kollman atom charges are assigned to protein atoms. At each
step of the calculation, the interactions are affected, and the best orientation of
ligands was determined to investigate the different types of interactions between
the copaiba oil-forming compounds and the protein.

Figures 4A, B, C, and table 2 illustrate the dockings of the copaiba oil com-
pounds against the Sars-CoV-2 receptor binding site complexed with its receptor
(PDB ID: 6M0J). The figs and table also show the interaction of kaurenoic acid
with TRP:271, ARG:273, LEU:144, TYR:127, LEU:503, HIS:505, PHE:504,
PHE274, MET:270, ASN:149 and ASP:269; Copalic acid with HIS:505, PHE:504,
ARG:273, TYR:515, TYR:127, ASN:508, SER:128, TRP:271 and LEU:503, and
β-caryophyllene acid with LEU:733 , LEU:391, PHE:390, PHE:32, TRP:69,
PHE:40, ARG:393, ASN:271, LEU:100 and ALA:36
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Figure 2: Different interactions between the kaurenoic acids in A, copalic acids in B and
β-caryophyllene in C and protein spike.

A
B

C

Figure 3: Amino acids were obtained from RBD. Orientation of acids kaurenoic in A, copalic
in B, and β-caryophyllene in C on the active sites of COVID-19 proteins.
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Figure 4: 2D visual representations of the acids kaurenoic in A, copalic in B and β-
caryophyllene in C.

Furthermore, in kaurenoic acid the alkyl interaction was observed surrounded
by the amino acid TRP:271 having a distance of 1.54616 Å. Pi-Alkyl interac-
tions are surrounded by amino acids ARG:273, LEU:144, and TYR:127 having
distances of 1.53098 Å, 1.52469 Å, and 1.44887 Å, respectively. Conventional
H-bond interactions are surrounded by amino acids LEU:5034 and HIS:505 with
1.53046 Å and 1.09958 Å, respectively.

Unfavorable bump interactions are surrounded by amino acids PHE:504 and
PHE:274 with 1.40918 Å and 1.55124 Å, respectively. Van der Waals interac-
tions are surrounded by amino acids MET:270, ASN:149, and ASP:269 with of
1.80711 Å, 1.54968 Å, and 1.52356 Å, respectively.

In copalic acid, alkyl interactions were observed surrounded by amino acids
HIS:505 and PHE:504 with 1.51632 Å and 1.53555 Å, respectively. Conventional
H-bond interactions are surrounded by amino acids ARG:273 and TYR:515
with 1.53098 Å and 1.36785 Å, respectively. Van der Waals interactions are
surrounded by amino acids ASN:508, SER:128, and TRP:271 with 1.53108 Å,
1.52889 Å, and 1.54616 Å, respectively.

In the β-caryophyllene acid, the alkyl interaction is surrounded by the amino
acid LEU:733 with 1.52373 Å. Pi-Alkyl interactions are surrounded by amino
acids LEU:391, PHE:390, PHE:32, and TRP:69 with 1.52737 Å, 1.53217 Å,
1.52478 Å, and 1.53147 Å, respectively. The Unfavorable bump interaction is
surrounded by the amino acid PHE:40 with 1.09015 Å. Van der Waals interac-
tions are surrounded by amino acids ARG:393, ASN:271, LEU:100, and ALA:36
with 1.52876 Å, 1.51483 Å, 1.52757, and 1.52554 Å, respectively.
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Table 2: Amino acid residues of acids kaurenoic, copalic and β-caryophyllene. Target protein
ID: 6M0J.

Ligand Binding residue Type Bond length (Å) Interactions
Kaurenoic TRP:271 Tryptophan 1.54616 Alkyl

ARG:273 Arginine 1.53098 Pi-Alkyl
LEU:144 Leucine 1.52469 Pi-Alkyl
TYR:127 Tyrosine 1.44887 Pi-Alkyl
LEU:503 Leucine 1.53046 Conventional H-bond
HIS:505 Histidine 1.09958 Conventional H-bond
PHE:504 Phenylalanine 1.40918 Unfavorable bump
PHE:274 Phenylalanine 1.55124 Unfavorable bump
MET:270 Methionine 1.80711 Van der Waals
ASN:149 Asparagine 1.54968 Van der Waals
ASP:269 Aspartate 1.52356 Van der Waals

Copalic HIS:505 Histidine 1.51632 Alkyl
PHE:504 Phenylalanine 1.53555 Alkyl
ARG:273 Arginine 1.53098 Conventional H-bond
TYR:515 Tyrosine 1.36785 Conventional H-bond
TYR:127 Tyrosine 1.36785 Unfavorable bump
ASN:508 Asparagine 1.53108 Van der Waals
SER:128 Serine 1.52889 Van der Waals
TRP:271 Tryptophan 1.54616 Van der Waals
LEU:503 Tryptophan 1.54616 Van der Waals

β caryophyllene LEU:733 Leucine 1.52373
Alkyl

LEU:391 Leucine 1.52737
Pi-Alkyl
PHE:390 Phenylalanine 1.53217 Pi-Alkyl
PHE:32 Phenylalanine 1.52478 Pi-Alkyl
TRP:69 Tryptophan 1.53147
Pi-Alkyl
PHE:40 Phenylalanine 1.09015 Unfavorable bump
ARG:393 Arginine 1.52876 Van der Waals
ASN:271 Asparagine 1.51483 Van der Waals
LEU:100 Leucine 1.52757 Van der Waals
ALA:36 Alanine 1.52554 Van der Waals
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4. Conclusion

Considering the anti-inflammatory properties of copaiba oil, we studied three
compounds that form the oil. We performed the classical optimizations calcu-
lations to obtain the most stable geometric conformation, using the conjugate
gradient (LGA) and quantum gradient (GGA). The total and binding energies
obtained for the three compounds were negative, which shows that the inves-
tigated complexes are stable. The β-caryophyllene is the most stable of the
compounds, as its total energy was the lowest.

The calculated MEPs showed that regions with positive potentials are fa-
vorable to nucleophilic attack, while those regions with negative potentials are
favorable to electrophilic attack. The results of molecular docking were discussed
based on different interactions between acids (ligands) and proteins (receptors).

From the results obtained, it can be inferred that the acids that form the
copaiba oil can be used as an inhibitor of COVID-19. These results encourage
further in vitro and in vivo investigations into the pharmacological properties
of copaiba oil.
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